Worksheet: Transformations of Quadratic Functions

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which correctly identifies the values of the parameters a, h, and k for the function $f(x) = -2(x+3)^2 + 1$

a.
$$a = -2, h = 3, k = 1$$

c.
$$\alpha = -2, h = -3, k = 1$$

b.
$$\alpha = 2, h = -3, k = -1$$

d.
$$a = -2, h = -3, k = -1$$

2. What is the equation of this graph?

a.
$$y = -x^2 + 3$$

c.
$$y = -(x+3)^2$$

b.
$$y = -3x^2$$

d.
$$v = -(x-3)^2$$

3. Which function includes a translation of 3 units to the left?

a.
$$f(x) = (x+3)^2 + 1$$

c.
$$f(x) = (x-3)^2 + 1$$

b.
$$f(x) = 3x^2 + 1$$

d.
$$f(x) = (x+1)^2 - 3$$

4. Which equation shows a translation of 3 left and vertical compression by a factor of 2 to the graph of $y = x^2$?

a.
$$y = 2(x-3)^2$$

c.
$$y = \frac{1}{2}(x-3)^2$$

b.
$$y = 2(x+3)^2$$

d.
$$y = \frac{1}{2}(x+3)^2$$

5. Joanne hit a ball straight up into the air. The height of the ball in metres, is given by the function $h(t) = -5(t-3)^2 + 45t$ seconds after the ball is hit. In how many seconds will the ball hit the ground?

6. Kevin threw a ball straight up with an initial speed of 20 metres per second. The function $y = -5(x-2)^2 + 20$ describes the ball's height, in metres, t seconds after Kevin threw it. What are the coordinates of the vertex?

7. Which equation describes a parabola that opens downward, is congruent to $y = x^2$, and has its vertex at (0, 3)?

a.
$$y = (x+3)^2 - 1$$

c.
$$y = -(x-3)^2$$

b.
$$y = -x^2 + 3$$

d.
$$y = x^2 + 3$$

- 8. List the sequence of steps required to graph the function $f(x) = -(x+4)^2 6$
 - a. horizontal translation 4 units to the right, vertical compression by a factor of 1, vertical translation 6 units down
 - horizontal translation 4 units to the right, reflection in x-axis, vertical translation 6 units
 - horizontal translation 4 units to the left, vertical translation 6 units up, reflection in x-axis
 - d. horizontal translation 4 units to the left, reflection in x-axis, vertical translation 6 units
- 9. Which function matches the graph?

a.
$$f(x) = -2(x-3)^2 + 1$$

c.
$$f(x) = (x+3)^2 + 2$$

b.
$$f(x) = 2(x+3)^2 - 1$$

c.
$$f(x) = (x+3)^2 + 2$$

d. $f(x) = \frac{1}{2}(x-3)^2 - 1$

10. Consider a parabola P that is congruent to $y = x^2$, opens upward, and has vertex (-1,3). Now find the equation of a new parabola that results if P is reflected in the x-axis and translated 3 units down.

a.
$$y = -(x+4)^2 + 3$$

c.
$$-(x+1)^2$$

b.
$$y = (x-1)^2 + 6$$

d.
$$-(x-2)^2 + 3$$

11. The graphs of $y = x^2$ and another parabola are shown below. What is a possible equation for the second para-

a.
$$y = 2x^2 + 1$$

a.
$$y = 2x^2 + 1$$

b. $y = \frac{1}{2}x^2 + 1$

c.
$$y = 2(x+1)^2$$

c.
$$y = 2(x+1)^2$$

d. $y = -2x^2 - 1$

Short Answer

12. The graph of f(x) is shown below. Graph the transformed functions in the same set of axes.

13. Name a function to describe each graph.

GRAPH A

GRAPH B

- 14. How does the shape of the graph of $f(x) = -\frac{1}{3}x^2$ compare with the graph of $g(x) = x^2$? Explain.
- 15. The net annual income of an engineer in Barry's company can be modelled by $I(x) = -290(x 48)^2 + 148\,000$, where x is the age of the engineer and $27 \le x \le 70$. What is the axis of symmetry?
- 16. Sketch the final graph of the function g(x) = -3(x+2) 3,

Problem

- 17. A parabola that opens downward has its vertex at (3, 0) and a *y*-intercept at (0, -9) The parabola is congruent to the parabola described by the function $f(x) = x^2$
 - a) What is the equation of the function?
 - b) Draw a graph of the function using key points.
 - c) What is the axis of symmetry?

d) What are the values of the parameters *a*, *h*, and *k*?

Worksheet: Transformations of Quadratic Functions Answer Section

MULTIPLE CHOICE

1	ANS.	C	PTS.	1	REF.	Knowledge and Understanding
						ng Transformations
2.						Knowledge and Understanding
						ng Transformations
3.					-	Knowledge and Understanding
						ng Transformations
4.						Knowledge and Understanding
						ng Transformations
5.	ANS:	В	PTS:	1	REF:	Application
						ng Transformations
6.	ANS:	В	PTS:	1	REF:	Application
	OBJ:	1.5 - Graphing	Quadr	atic Functions	by Usir	g Transformations
7.	ANS:	В	PTS:	1	REF:	Knowledge and Understanding
	OBJ:	1.5 - Graphing	g Quadr	ratic Functions	by Usir	ng Transformations
8.	ANS:	D	PTS:	1	REF:	Communication
	OBJ:	1.6 - Using M	ultiple '	Transformation	s to Gra	aph Quadratic Functions
9.	ANS:	В	PTS:	1	REF:	Knowledge and Understanding
	OBJ:	1.6 - Using M	ultiple '	Transformation	s to Gra	aph Quadratic Functions
10.						Knowledge and Understanding
						aph Quadratic Functions
11.		A				
	OBJ:	1.6 - Using M	ultiple '	Transformation	s to Gra	aph Quadratic Functions

SHORT ANSWER

12. ANS:

PTS: 1 REF: Knowledge and Understanding

OBJ: 1.5 - Graphing Quadratic Functions by Using Transformations

13. ANS:

Answers may vary. For example:

Graph A:
$$f(x) = -x^2 + 2$$

Graph B:
$$g(x) = (x-3)^2 - 1$$

- PTS: 1 REF: Thinking
- OBJ: 1.5 Graphing Quadratic Functions by Using Transformations
- 14. ANS:

The shape of the graph is the same as the graph of $f(x) = x^2$ compressed vertically by a factor of 3 and reflected vertically.

- PTS: 1 REF: Communication
- OBJ: 1.5 Graphing Quadratic Functions by Using Transformations
- 15. ANS:
 - x = 48
 - PTS: 1 REF: Application
 - OBJ: 1.5 Graphing Quadratic Functions by Using Transformations
- 16. ANS:

- PTS: 1 REF: Knowledge and Understanding
- OBJ: 1.6 Using Multiple Transformations to Graph Quadratic Functions

PROBLEM

17. ANS:

$$a)^{-(x-3)^2}$$

PTS: 1 REF: Communication
OBJ: 1.5 - Graphing Quadratic Functions by Using Transformations