Worksheet: Transformations of Quadratic Functions

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which correctly identifies the values of the parameters a, h, and k for the function $f(x)=-2(x+3)^{2}+1$
a. $\quad a=-2, h=3, k=1$
b. $\quad a=2, h=-3, k=-1$
c. $a=-2, h=-3, k=1$
d. $a=-2, h=-3, k=-1$
\qquad 2. What is the equation of this graph?

a. $y=-x^{2}+3$
b. $y=-3 x^{2}$
c. $y=-(x+3)^{2}$
d. $y=-(x-3)^{2}$
2. Which function includes a translation of 3 units to the left?
a. $f(x)=(x+3)^{2}+1$
b. $f(x)=3 x^{2}+1$
c. $f(x)=(x-3)^{2}+1$
d. $f(x)=(x+1)^{2}-3$
3. Which equation shows a translation of 3 left and vertical compression by a factor of 2 to the graph of $y=x^{2}$?
a. $y=2(x-3)^{2}$
b. $y=2(x+3)^{2}$
c. $y=\frac{1}{2}(x-3)^{2}$
d. $y=\frac{1}{2}(x+3)^{2}$
4. Joanne hit a ball straight up into the air. The height of the ball in metres, is given by the function $h(t)=-5(t-3)^{2}+45 t$ seconds after the ball is hit. In how many seconds will the ball hit the ground?
a. 3
b. 6
c. 9
d. 45
5. Kevin threw a ball straight up with an initial speed of 20 metres per second. The function $y=-5(x-2)^{2}+20$ describes the ball's height, in metres, t seconds after Kevin threw it. What are the coordinates of the vertex?
a. $(-5,2)$
b. $(2,20)$
c. $(20,2)$
d. $(-5,20)$
6. Which equation describes a parabola that opens downward, is congruent to $y=x^{2}$, and has its vertex at $(0,3)$?
a. $\quad y=(x+3)^{2}-1$
b. $y=-x^{2}+3$
c. $y=-(x-3)^{2}$
d. $y=x^{2}+3$
7. List the sequence of steps required to graph the function $f(x)=-(x+4)^{2}-6$
a. horizontal translation 4 units to the right, vertical compression by a factor of 1 , vertical translation 6 units down
b. horizontal translation 4 units to the right, reflection in x-axis, vertical translation 6 units down
c. horizontal translation 4 units to the left, vertical translation 6 units up, reflection in x-axis
d. horizontal translation 4 units to the left, reflection in x-axis, vertical translation 6 units down
\qquad 9. Which function matches the graph?

a. $f(x)=-2(x-3)^{2}+1$
b. $f(x)=2(x+3)^{2}-1$
c. $f(x)=(x+3)^{2}+2$
d. $f(x)=\frac{1}{2}(x-3)^{2}-1$
8. Consider a parabola P that is congruent to $y=x^{2}$, opens upward, and has vertex $(-1,3)$. Now find the equation of a new parabola that results if P is reflected in the x-axis and translated 3 units down.
a. $y=-(x+4)^{2}+3$
b. $y=(x-1)^{2}+6$
c. $-(x+1)^{2}$
d. $-(x-2)^{2}+3$
9. The graphs of $y=x^{2}$ and another parabola are shown below. What is a possible equation for the second parabola?

a. $y=2 x^{2}+1$
b. $y=\frac{1}{2} x^{2}+1$
c. $y=2(x+1)^{2}$
d. $y=-2 x^{2}-1$

Short Answer

12. The graph of $f(x)$ is shown below. Graph the transformed functions in the same set of axes.

13. Name a function to describe each graph.

GRAPH A

GRAPH B

14. How does the shape of the graph of $f(x)=-\frac{1}{3} x^{2}$ compare with the graph of $g(x)=x^{2}$? Explain.
15. The net annual income of an engineer in Barry's company can be modelled by $I(x)=-290(x-48)^{2}+148000$, where x is the age of the engineer and $27 \leq x \leq 70$. What is the axis of symmetry?
16. Sketch the final graph of the function $g(x)=-3(x+2)-3$,

Problem

17. A parabola that opens downward has its vertex at $(3,0)$ and a y-intercept at $(0,-9)$ The parabola is congruent to the parabola described by the function $f(x)=x^{2}$
a) What is the equation of the function?
b) Draw a graph of the function using key points.
c) What is the axis of symmetry?
d) What are the values of the parameters a, h, and k ?

Worksheet: Transformations of Quadratic Functions
 Answer Section

MULTIPLE CHOICE

1. ANS: C PTS: 1 REF: Knowledge and Understanding OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
2. ANS: D PTS: 1 REF: Knowledge and Understanding

OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
3. ANS: A PTS: 1 REF: Knowledge and Understanding OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
4. ANS: D PTS: 1 REF: Knowledge and Understanding OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
5. ANS: B PTS: 1 REF: Application

OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
6. ANS: B PTS: 1 REF: Application

OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
7. ANS: B PTS: 1 REF: Knowledge and Understanding

OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
8. ANS: D PTS: 1 REF: Communication

OBJ: 1.6-Using Multiple Transformations to Graph Quadratic Functions
9. ANS: B PTS: 1 REF: Knowledge and Understanding OBJ: 1.6 - Using Multiple Transformations to Graph Quadratic Functions
10. ANS: C PTS: 1 REF: Knowledge and Understanding

OBJ: 1.6 - Using Multiple Transformations to Graph Quadratic Functions
11. ANS: A PTS: 1 REF: Application

OBJ: 1.6 - Using Multiple Transformations to Graph Quadratic Functions

SHORT ANSWER

12. ANS:

PTS: 1
REF: Knowledge and Understanding

OBJ: 1.5 - Graphing Quadratic Functions by Using Transformations
13. ANS:

Answers may vary. For example:
Graph A: $f(x)=-x^{2}+2$
Graph B: $g(x)=(x-3)^{2}-1$
PTS: 1 REF: Thinking
OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
14. ANS:

The shape of the graph is the same as the graph of $f(x)=x^{2}$ compressed vertically by a factor of 3 and reflected vertically.

PTS: 1 REF: Communication
OBJ: 1.5-Graphing Quadratic Functions by Using Transformations
15. ANS:
$x=48$
PTS: 1 REF: Application
OBJ: 1.5 - Graphing Quadratic Functions by Using Transformations
16. ANS:

PTS: 1
REF: Knowledge and Understanding
OBJ: 1.6 - Using Multiple Transformations to Graph Quadratic Functions

PROBLEM

17. ANS:
a) $-(x-3)^{2}$

PTS: 1
REF: Communication
OBJ: 1.5-Graphing Quadratic Functions by Using Transformations

