
www.MathWorksheetsGo.com
On Twitter: twitter.com/mathprintables

I. Model Problems.

II. Practice
III. Challenge Problems
IV. Answer Key

Web Resources

YouTube How To Solve Logarithmic Equations
www.mathwarehouse.com/logarithm/equation/how-to-solve-logarithmic-equations.php
Logarithms:
www.mathwarehouse.com/logarithm/
Logarithm Rule and Formulas:
www.mathwarehouse.com/logarithm/rules-and-formula.php

© www.MathWorksheetsGo.com All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Online Graphing Calculator(free):
http://www.meta-calculator.com/online/

META
CRLᄃ

I. Model Problems

To solve logarithmic equation, remember that if two logs with the same base are equal, their insides must also be equal.

Example 1 Solve: $\log _{2}(x-1)=\log _{2}(4)$.
$x-1=4$
Set the inside of the logs equal to each other.
$x=5$
Add 1 to each side.
The answer is $\boldsymbol{x}=\mathbf{5}$.
Sometimes you need to combine logs before solving the equation.
Example 2 Solve: $\log _{10}(x+1)+\log _{10}(x-1)=\log _{10}(8)$

$$
\begin{array}{ll}
\log _{10}((x+1)(x-1))=\log _{10} 8 & \begin{array}{l}
\text { Use the Product Rule for } \\
\text { Logarithms to simplify the left- } \\
\text { hand side of the equation. }
\end{array} \\
(x+1)(x-1)=8 & \begin{array}{l}
\text { Set the inside of the logs equal ot } \\
\text { each other. }
\end{array} \\
x^{2}-1=8 & \text { Simplify. } \\
x^{2}=9 & \text { Add 1 to each side. } \\
x=-3, x=3 & \text { Take the square root of each side. }
\end{array}
$$

Recall that the inside of a logarithm cannot be negative. If x equals -3 , then $\log _{10}(x+1)$ would equal $\log _{10}(-2)$, which does not exist. Therefore the only solution is $\boldsymbol{x}=\mathbf{3}$.

When the logarithm equals a number, rewrite the logarithm as an exponential equation, then solve.

Example 3 Solve: $\log _{2}(x+2)=5$
$\log _{2}(x+2)=5$
$2^{5}=x+2$
$32=x+2$
$x=30$
Rewrite the logarithm as an exponential equation.

Simplify.
Subtract 2 from each side.

The answer is $\boldsymbol{x}=30$.

II. Practice

Solve the following logarithmic equations. If there is no solution, so state.

1. $\log _{3}(4-x)=\log _{3}(x+8)$
2. $\log _{4}(x+2)=\log _{4}(55)$
3. $\log _{2}(2 x+1)=\log _{2}(15)$
4. $\log _{5}(x+1)=\log _{5}(2 x+7)$
5. $\log _{3}(x+2)=\log _{3}(3 x-5)$
6. $\log _{7}(x+3)=\log _{7}(5 x-8)$
7. $\log _{5}(-x+1)=\log _{5}(5+x)$
8. $\log _{8}(2 x+4)=\log _{8}(60)$
9. $\log _{4}(x+1)=\log _{4}(10)$
10. $\log _{4}(3 x+1)=\log _{4}(2 x)$
11. $\log _{2}(x+2)+\log _{2}(x+1)=$
12. $\log _{2}(x)+\log _{2}(x+1)=$ $\log _{2}(x)+\log _{2}(x+4)$ $\log _{2}(-4 x-6)$
13. $\log _{2}(x-2)+\log _{2}(x-5)=$ $\log _{2}(x-1)+\log _{2}(x+6)$
14. $\log _{2}(x)+\log _{2}(x-6)=$ $\log _{2}(2 x-7)$
15. $\log _{2}(x-2)+\log _{2}(x-8)=$
16. $2 \cdot \log _{3}(x+1)=\log _{3}(x+2)+$
$\log _{2}(x+1)+\log _{2}(x-9) \quad \log _{3}(x-3)$
$17.2 \cdot \log _{4}(x+3)=\log _{4}(25)$
17. $\log _{2}(x+5)=-1$
18. $\log _{2}(2+3 x)=0$
19. $\log _{4}(17 x-4)=3$
20. $3 \cdot \log _{2}(x+1)=\log _{2}(27)$
21. $\log _{3}(x-2)=3$
22. $\log _{2}(2 x+1)=4$
23. $\log _{4}(x-1)=-2$

III. Challenge Problems

25. Solve: $\log _{2}(x)-\log _{2}(\sqrt{x}-1)=2$.
26. Solve: $\log _{5}(x-3)=\log _{5}(\sqrt{x+3})$
27. Correct the Error

There is an error in the student work shown below:

$$
\begin{gathered}
2 \cdot \log _{2}(x+1)=\log _{2} 9 \\
\log _{2}(x+1)^{2}=\log _{2} 9 \\
(x+1)^{2}=9 \\
x+1=3 \text { or } x+1=-3 \\
x=2 \text { or } x=-4
\end{gathered}
$$

What is the error? Explain how to solve the problem.
IV. Answer Key

1. $x=-2$
2. $x=53$
3. $x=7$
4. no solution
5. $x=3.5$
6. $x=11 / 4$
7. $x=-2$
8. $x=28$
9. $x=9$
10. $x=1$
11. $x=2$
12. no solution
13. no solution
14. $x=7$
15. $x=12.5$
16. no solution
17. $x=2$
18. $x=2$
19. $x=-4.5$
20. $x=29$
21. $x=-1 / 3$
22. $x=7.5$
23. $x=4$
24. $x=17 / 16$
25. $x=4$
26. $x=6$
27. $x=-4$ cannot be a solution to the equation; the inside of a logarithm cannot be negative.
